Ceramics 2020: Market Analysis and Growth of Ceramics

Organizing committee invites all participants from all over the world to attend “6th International Conference and Expo on Ceramics and Composite Materials’’ during June 08-09, 2020 in Frankfurt, Germany.

Ceramics and Composite Materials is a global overview with the Theme: “Recent Innovations and Future approaches: Ceramics and Composite Materials” is designed for professionals at all levels and career phases of the CeramicsMaterials science and Composites industry, who want to improve their understanding of what will drive and shape the future of the market. This will include senior executives, sales and marketing personnel, strategic planners, who will be benefit from a broad overview of the Ceramics, Materials Science and Composite Materials. The strength of the Conference is that the participants tend to include all phases of the value chain as well as individuals from a wide variety of sector and countries.

Why to attend???

  •  Build your professional network.
  •  Hear about the latest research.
  •  Improve your presentation and communication skills.
  •  Get response on an early version of your latest work.
  •  Acquire beyond your field of interest.
  •  Get an opportunity for people to meet you.
  •  Know the strengths and weakness of your conferences.
  •  Easier to solve the problems and struggles which you go through at work.

Target Audience:

  • Scientists
  • Young  research  fellows
  • Research Scholars
  • Residents, Fellows & Post Docs
  • Students
  • Ceramic, Materials, Chemical, Electrical, Technology Companies
  • Business Executives & Directors
  • Ceramic and Materials science Associations
  • Advertising Agency Executives
  • Industry professionals

Market Growth of Ceramics:

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties. Ceramic materials may have a crystalline or partly crystalline structure, with long-range order on atomic scale. Glass ceramics may have an amorphous or glassy structure, with limited or short-range atomic order. They are either formed from a molten mass that solidifies on cooling, formed and matured by the action of heat, or chemically synthesized at low temperatures using, for example, hydrothermal or sol-gel synthesis. The special character of ceramic materials gives rise to many applications in materials engineering, electrical engineering, chemical engineering and mechanical engineering. As ceramics are heat resistant, they can be used for many tasks for which materials like metal and polymers are unsuitable. Ceramic materials are used in a wide range of industries, including mining, aerospace, medicine, refinery, food and chemical industries, packaging science, electronics, industrial and transmission electricity, and guided lightwave transmission.

Ceramic materials are brittle, hard, and strong in compression, weak in shearing and tension. They withstand chemical erosion that occurs in an acidic or caustic environment. In many cases withstanding erosion from the acid and bases applied to it. Ceramics generally can withstand very high temperatures such as temperatures that range from 1,000 °C to 1,600 °C (1,800 °F to 3,000 °F). Exceptions include inorganic materials that do not have oxygen such as silicon carbide. Glass by definition is not a ceramic because it is an amorphous solid (non-crystalline). However, glass involves several steps of the ceramic process and its mechanical properties behave similarly to ceramic materials. Crystalline Ceramic materials are not amenable to a great range of processing. Methods for dealing with them tend to fall into one of two categories - either makes the ceramic in the desired shape, by reaction in situ, or by "forming" powders into the desired shape, and then sintering to form a solid body. Ceramic forming techniques include shaping by hand (sometimes including a rotation process called "throwing"), slip casting, tape casting (used for making very thin ceramic capacitors, etc.), injection moulding, dry pressing, and other variations. Non-crystalline ceramics, being glasses, tend to be formed from melts. The glass is shaped when either fully molten, by casting, or when in a state of toffee-like viscosity, by methods such as blowing to a mold. If later heat-treatments cause this glass to become partly crystalline, the resulting material is known as a glass-ceramic.

Ceramics are categorized as Industrial Ceramics, Fine Ceramics, Engineered Ceramics and enhanced/technical Ceramics that are categorized by excellent thermal, magnetic, optical and electrical properties. Due to these properties, they have emerged as effective alternatives to high-performance plastic and steel. They are highly resistant to oxidation/corrosion and exhibit superior mechanical strengths. In addition to productivity and performance improvements, ceramics require low maintenance and results in lower overall costs. Titanates, modified silicates and borides generally comprise advanced ceramic compounds. Amongst all advanced ceramic materials, Zirconia compounds are witnessing robust growth with applications spanning diverse end uses.

US, Canada, Europe, Asia-Pacific, Middle East & Africa and Latin America are Geographic Markets Analyzed.

Global Ceramics market was valued at USD 229.13 billion in 2018 and is projected to grow at lucrative CAGR of 8.6% from 2019 to 2025. Rising demand from various industries such as heavy machinery, electronics, energy, automotive, cutting tools and defense is a key factor influencing market growth.

Edward Charles
Program Manager | Ceramics 2020
Contact Number: +447480730483
Email: ceramics@brainstormingmeetings.com
Website: https://ceramics.insightconferences.com/